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A current-current energy-momentum tensor 
for chiral dynamics 

Colin Parish 
Physics Department, Queen Mary College, University of London, Mile End Road, London 
El  4NS, UK 

Received 21 March 1973 

Abstract. Starting from a canonical quantum field theory model and imposing invariance 
of the theory under a group, acting nonlinearly on the fields, a group-invariant energy- 
momentum tensor of the Sugawara form is constructed which is free of ambiguities due to 
factor ordering and has the required properties. 

1. Introduction 

In order to quantize a system with derivative coupling such as occurs for example in 
chiral theories or gravitational theories, the ordering of noncommuting variables has 
to be taken into account. 

Charap (1973) has shown for a quantum-mechanical model of a system of massless, 
pseudoscalar mesons, that imposing chiral invariance is sufficient to completely remove 
the ambiguities associated with the ordering of factors. Further, the resulting hamil- 
tonian is unique and of the charge-charge form. This suggests that the corresponding 
quantum field theory might have a canonical energy-momentum tensor of the 
current-current form as in Sugawara’s (1968) field theory of currents. 

In 0 2, the classical field theory is briefly discussed and then in the next section the 
corresponding quantum field theory. Invariance of the system under a group G acting 
nonlinearly on the fields is imposed in 0 4 and this requirement is sufficient to remove 
the factor-ordering ambiguities. The canonical energy-momentum tensor TV” is 
discussed in the final section. It is unique, group invariant and of the current-current 
form. Furthermore, it is locally conserved, satisfies the condition of Schwinger (1963) 
and the generators of space-time translations and rotations constructed from TVv 
satisfy the Poincare algebra. 

Unlike in the original Sugawara model, there is no parity doubling, but the diffi- 
culties of interpretation due to products of operators at the same space-time point are 
still present. 

2. Classical field theory 
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where the gab are, as yet unspecified, functions of the multiplet of spinless fields @ ( x )  
(a = 1 , 2 , .  . . m ;  x = xfi = (xo,  x l ,  x2,  x 3 )  = ( t ,  x)), and without loss of generality the 
matrix g,, may be taken symmetrical. 

Each field @ ( x )  may be associated with a Lorentz four-vector n,"(x) given by 

ng(x) a y a ( a , p ( x ) )  (2.2) 

ng = g,,aW&p. (2.3) 

which, for the lagrangian density (2.1), gives 

In order to construct a hamiltonian density H(4, V4, n, V n )  (2.2) must be solvable 
for 8'4' as a function of n, = n:, which from (2.3) means the determinant of g,, must be 
nonzero, or equivalently that the symmetric differential form 

ds2 = g,,d@d4B (2.4) 
defines a pseudo-riemannian metric on the manifold M, parametrized by the fields @. 
It is further assumed that this form is positive definite and so defines a riemannian 
metric. 

Now consider the action of a compact, semi-simple Lie group G, with generators 
Fa (a = 1 , 2 , .  . . n), on the fields @. Then associated with the infinitesimal local trans- 
formation 

4 7 ~ )  --* @ ( x )  + Q a f " " ( 4 )  

20, = -n,"f"". (2.6) 

(2.5) 

of the fields, are the Noether current densities Y f i ( x )  with 

The Q, are infinitesimal gauge parameters and the f""(4) some functions of the fields, 
which satisfy the group laws. 

If, further, G is an invariance group of the system, the current densities are conserved 
and the form (2.4) becomes a group in-iariant metric on the manifold M, satisfying 
Killing's equations, which may be written 

f=S,ygaY + f ( l O l , y g S Y  - foygaB .Y =o ( 2 . 7 ~ )  

or equivalently 

faag,y,a+f"4,Bg,y+faa,yga, = 0 (2.7b) 

where IlgQlI is the matrix inverse of Ilg,,ll and f",,, denotes af"B/a4v. 
If the action of the group G on the manifold M is linear, then Killing's equation 

( 2 . 7 ~ )  implies that gap is a second-rank group tensor. However, when the action of the 
group is nonlinear, the solutions gUB are 

gap = v eabf(l0tfb, ( 2 . 8 ~ )  

where v is an arbitrary constant and Ileabll is the matrix inverse of I/eab/I given by 
eab = f acd f bdc (2.8b) 

(in a particular basis, the canonical Cartan basis, eab - dab). T h e P b c  are the structure 
constants of the Lie algebra of the group G. 

The canonical energy-momentum tensor density T p v ,  defined for spinless fields as 

~ f i v  n p v 4 a - , y ~  (2.9) 
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where qPV is the space-time metric with signature (1, - 1, - 1, - l), may now be written 

TMv = v e, ,da""fb'((s~(sX-+~"'~,~).  (2.10) 

Finally, the equations of motion are 

aPn: = -+q,vgay ,a npnv P Y 

n4p + r:,a,yaPp = o 
or 

with the Christoffel symbol rt., in (2.1 lb) defined by 

C y  E +gdP(ga r! + g d y , a  - g a y J  

3. Quantum field theory 

(2.1 

(2.1 

To obtain the quantum analogue of the classical system described in the previous 
section, the canonical equal-time commutation relations 

[@(xf, 4P(Y)l = 0 (3.la) 

[na(x), ~ P ( Y ) I  = 0 (3.lb) 

[@(x), np(Y)I = i6"&j3(x - Y )  (3 .1~)  

are imposed, where da(x),  nP(y) are now hermitian operators. 
The dynamics is specified by giving the form of the hamiltonian density operator. 

This is formally taken over from the classical theory, except that now the ordering of 
the noncommuting factors has to be taken into account. Thus H is taken to be ofthe form 

(3.2) 

where k takes the values 1,2,3. In (3.2) all possible orderings have been allowed for 
and the U" and U are arbitrary functions of the fields @. If U' and U are real functions, 
H is hermitian and furthermore if g Z P  is the same function of the fields as in the classical 
case, and if U" and v tend to zero with Planck's constant then H is a suitable quantum 
analogue of the corresponding classical hamiltonian density H, 

H = &{ II, { 716 9 g"'}} + +{ 7t" 9 U"} U $g,,dk@ak$' 

H c  = !dnzgaPn,9+gaPdk4  a k  a 4 P 1. 

The Heisenberg equations of motion are 

do@ = +{no, g a p }  + U" 

and 
0 a na = -i{nj3, { x y ,  g P y , ~ } } - ~ { n P ~  - U , z - - g a y , p + g p a , y - g y B , a )  ak4Pdk4y* 

Inverting (3.3) gives 

nz = $ { g a p ,  do@'} -U,  

U ,  = gzpuP. 

where 

(3.3) 

(3.4) 

(3.5) 
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Consider now the action of a compact, semi-simple group G on the fields 4". Thus, 
there is a set of generators F", with the algebra 

(3.6) [Fa,  Fb] = i,f'ObcFc 

where thefabC are the c number structure constants of the algebra and the generators 
are assumed to arise from local current densities fao(x) (see beginning of 6 4) 

F"(t) = d3xfao(x). (3.7) s 
Following the same procedure as for constructing the hamiltonian density (3.2), f"'(x) 
is taken to have the form 

(3.8) 
where the 1" are some functions of the fields which tend to zero with Planck's constant. 

The action of the group on the fields 4' and conjugate momenta na can now be 
determined. From (3.1) and (3.8) 

$00 = -+{nu, f " " }  + I" 

U"O(X), 4"(Y)l  = if""(W3(x -Y)  

[Fa, 4 Y Y ) l  = if""(+). (3.9) 

and using (3.7) 

The compatibility of (3.6) and (3.9) is embodied in the Jacobi identity for Fa, Fb  and 
@ which gives 

(3.10) 

so that the group action is linear on the momenta 71, .  The Jacobi identity for F", Fb 
and rcy now implies 

f "Ulb," - f b"l"," = f "bCIC 

Also from (3.8) and (3.11) 

uao(x) ,  y b O ( y ) ]  = ifabcfC0d3(x - y )  

which is compatible with (3.6). 

(3.11) 

(3.12) 

4. Invariance 

The system is now assumed to be invariant under the action of the group G 

[F",PP] = 0 (4.1) 
where the P P  are the space-time translation operators. Thus Fa has the form (3.7) and 
the associated Lorentz four-vector current densities f"'(x) are locally conserved. 
Imposing this latter condition gives the requirement 

(4.2) 
where a; denotes differentiation with respect to the argument x in the delta function. 

[ ~ ( x ) ,  f u O ( y ) ]  = - ij"'(x)a;d3(x -y) 
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Explicit calculation of the left-hand side of (4.2) using (3.2) and (3.8) gives 

[ H ( x ) , f n O ( y ) ]  = -i83(~-y)[Q{nz, {nP, K"'PB)} ++(n,, K ~ ~ } + K ~ ]  

+ ifa"g,,Sk4Pd;63(x - y )  (4.3) 

(4.4u) 

(4.4b) 

(4.4c) 

Imposing (4.2) and identifying, by analogy with the classical expression (2.6), 

p = - f aXgIP&p (4.5) 

(see (5.12) fqr the justification of this) requires all the functions K to vanish. 
Solving for each of the equations (4.4u), (4.4b) and (4 .4~)  in that order for gzp, U' 

and U respectively and assuming the action of G is nonlinear on the fields (see (2.8a) 
and (2.8b)) then 

( 2 . 8 ~ )  

(4.6a) 

(4.6b) 

5. The energy-momentum tensor 

Substituting now the expressions (2.8) and (4.6) for gzP, U' and U in that for the hamiltonian 
density (3.2) and then using (3.8) and (4.5) for 2no and Yak respectively, the hamiltonian 
density may be written 

(5.1) 

All the operators are hermitian and v eab is positive definite so that H is a positive semi- 
definite operator as required. 

Too = H = i v  e o b u n 0 2 b 0  + f" . bb). 

An expression for the energy-momentum tensor may now be found from (5.1) 

T p v  = 4 v  e a b { j a K ,  2bA}(6; 6 ' , -~qpvqKA)  (5.2) 

and this now has to be shown to have the correct properties, in order to be taken as the 
energy-momentum tensor. 

First, from (5.2) Schwinger's (1963) condition may be seen to be satisfied 

[Too(x) ,  ~ " ( y ) ]  = - i( 7'Ok(x) + ~"(y))d:d~(x -y ) .  (5.3) 

Then with the usual definitions 

P k  = d3xTok(x) J 
s Jk' = d3~(xkT0 ' (x)  -X I  Tok(x) )  
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the following relations hold : 

[Pk, $"(Y)l = - i ak$"(Y) 

[Jk',  4 Y Y ) l  = - i(Yk d'$"(Y) - Y' ak@(Y)) 
so that Pk and Jk' are the infinitesimal generators for three-dimensional translations 
and rotations respectively. Also from (5.4) and (5.5) 

[P",'] = 0 (5 .6~)  

[pk, ~ l m ]  = - i(dk'P" - a k m p ' )  (5.6b) 

[ J k ' ,  (5 .6~)  

These relations (5.6) together with Schwinger's condition (5.3) then guarantee the 
Poincark invariance of the system. 

Using Killing's equations (2.7b) and the expressions for the currents (3.8) and (4.5) 
and the identity 

= - i(pJnk - gkmJ'n + $nJkm - a k n J m ' ) ,  

f (4 a:, d3(x -Y)  = f(Y) 6; J3(X - Y )  + J3(X - Y )  d:,f (Y) (5.7) 
the current algebra of the system is 

WO(X), fbO(y)] = ipC/'063(X -y) (3.12) 

(5.8) [kt"O(x), ybk(y)] = ifabcyckd3(~ -Y) - isab(y)a;d3(~ -Y)  

Vak(x), Yb'(Y)l = 0 

sab = f ""gap f b t  

Vak(x), SbC(Y)l = 0 

LPO(X), sbC(y)] = i(fabdSdc + f a c d S d b ) 6 3 ( ~  - y )  

where the 4 number Schwinger term Sab in (5.8) is given by 

(5.9) 

In fact, the algebra of currents and Schwinger terms closes 

where the relation 

s a b , * f f a  = f cadSdb +fcbdSd" 

has been used. 
Also using in addition equation (3.44 for U" it is easy to see that 

(5.10) 

(5.11) 

Inverting (5.11) using (5.10) gives 

y a p  = -+{ f " " g u p ,  a q v }  (5.12) 

which shows that for the choice of current components (3.8) and (4.5) f"+(x) is a Lorentz 
four-vector. Direct calculation using (5.12), (3.10) and (2.7b) now gives 

a p y e v -  a v y e p  = +fedb{ydv, ybq. (5.13) 
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Now from the expression (5.2) for Tpv  

d,Tpv = $ v e a b { y i ,  a y b v  - dvybp} (5.14) 

and substituting (5.13) and using (5.10) and symmetry arguments, the right-hand side of 
(5.14) vanishes so that Tp' is locally conserved. Thus Tpv  as given by (5.2) has the 
properties required of an energy-momentum tensor. In addition, T p v  is easily checked 
to  be group invariant and the only ambiguity in Tpv once given the transformation 
law (3.9) is in the functions I". However, changing the functions 1" is equivalent to per- 
forming the unitary transformation 

y00(~)  = e - i N ( t ) p O ( X )  eiN(t) (5.15) 

on the solutions ya0(x) of (3.12) and thus on T p v  as given by (5.2). So, up to a unitary 
transformation, the group invariant energy-momentum tensor is unique. In (5.15) 

N ( t )  = d3YU(Y) 

j% -L{ 2 %lfaa). 

s 
for some function U of the fields, such that U , #  = U ,  and 

This means, in particular that, after a suitable unitary transformation, the hamiltonian 
density (3.2) may be written 

= ${ { 9 g a p } }  + k a p a k @ a k @  + gve,bf"a,,fbp,,(63(0))2' 

The presence of the final term involving (S3(0))' has been noted previously by Dowker 
and Mayes (1971) and Suzuki and Hattori (1972) (see the discussion in Charap (1973) 
however). 

Finally, the parity-doubling objections of Dashen and Frishman (1969) are removed 
in this model since the Schwinger terms are q numbers and Tff" = TY since 

e a b { y ? ?  3:) = e a b { y ? ,  2:) 
where the suffixes R and L refer to T being expressed entirely in terms of right gip(x) 
or left ytp(x) chiral currents respectively and defined as one half the sum and one half 
the difference of the usual vector and axial vector currents. 
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